Impact of time-of-flight PET on whole-body oncologic studies: a human observer lesion detection and localization study.

نویسندگان

  • Suleman Surti
  • Joshua Scheuermann
  • Georges El Fakhri
  • Margaret E Daube-Witherspoon
  • Ruth Lim
  • Nathalie Abi-Hatem
  • Elie Moussallem
  • Francois Benard
  • David Mankoff
  • Joel S Karp
چکیده

UNLABELLED Phantom studies have shown improved lesion detection performance with time-of-flight (TOF) PET. In this study, we evaluate the benefit of fully 3-dimensional, TOF PET in clinical whole-body oncology using human observers to localize and detect lesions in realistic patient anatomic backgrounds. Our hypothesis is that with TOF imaging we achieve improved lesion detection and localization for clinically challenging tasks, with a bigger impact in large patients. METHODS One hundred patient studies with normal (18)F-FDG uptake were chosen. Spheres (diameter, 10 mm) were imaged in air at variable locations in the scanner field of view corresponding to lung and liver locations within each patient. Sphere data were corrected for attenuation and merged with patient data to produce fused list-mode data files with lesions added to normal-uptake scans. All list files were reconstructed with full corrections and with or without the TOF kernel using a list-mode iterative algorithm. The images were presented to readers to localize and report the presence or absence of a lesion and their confidence level. The interpretation results were then analyzed to calculate the probability of correct localization and detection, and the area under the localized receiver operating characteristic (LROC) curve. The results were analyzed as a function of scan time per bed position, patient body mass index (BMI < 26 and BMI ≥ 26), and type of imaging (TOF and non-TOF). RESULTS Our results showed that longer scan times led to an improved area under the LROC curve for all patient sizes. With TOF imaging, there was a bigger increase in the area under the LROC curve for larger patients (BMI ≥ 26). Finally, we saw smaller differences in the area under the LROC curve for large and small patients when longer scan times were combined with TOF imaging. CONCLUSION A combination of longer scan time (3 min in this study) and TOF imaging provides the best performance for imaging large patients or a low-uptake lesion in small or large patients. This imaging protocol also provides similar performance for all patient sizes for lesions in the same organ type with similar relative uptake, indicating an ability to provide a uniform clinical diagnosis in most oncologic lesion detection tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement in lesion detection with whole-body oncologic time-of-flight PET.

UNLABELLED Time-of-flight (TOF) PET has great potential in whole-body oncologic applications, and recent work has demonstrated qualitatively in patient studies the improvement that can be achieved in lesion visibility. The aim of this work was to objectively quantify the improvement in lesion detectability that can be achieved in lung and liver lesions with whole-body (18)F-FDG TOF PET in a coh...

متن کامل

Impact of time-of-flight on PET tumor detection.

UNLABELLED Time-of-flight (TOF) PET uses very fast detectors to improve localization of events along coincidence lines-of-response. This information is then utilized to improve the tomographic reconstruction. This work evaluates the effect of TOF upon an observer's performance for detecting and localizing focal warm lesions in noisy PET images. METHODS An advanced anthropomorphic lesion-detec...

متن کامل

Effect of varying number of OSEM subsets on PET lesion detectability.

UNLABELLED Iterative reconstruction has become the standard for routine clinical PET imaging. However, iterative reconstruction is computationally expensive, especially for time-of-flight (TOF) data. Block-iterative algorithms such as ordered-subsets expectation maximization (OSEM) are commonly used to accelerate the reconstruction. There is a tradeoff between the number of subsets and reconstr...

متن کامل

Impact of PET - CT motion correction in minimising the gross tumour volume in non-small cell lung cancer

AbstractObjective: To investigate the impact of respiratory motion on localization, and quantification lung lesions for the Gross Tumour Volume utilizing an in-house developed Auto3Dreg programme and dynamic NURBS-based cardiac-torso digitised phantom (NCAT). Methods: Respiratory motion may result in more than 30% underestimation of the SUV values of lung, liver and kidney tumour lesions. The m...

متن کامل

The effect of incorporating the quantitative analysis besides visual assessments of 18F-FDG brain PET images for the localization of epileptogenic zones

Introduction: FDG Brain PET is a valuable paraclinical tool for presurgical assessments of patients suffering from refractory epilepsy. By the widespread accessibility of PET, recognizing the functional lesions has become a current practical method especially in preoperative evaluations of the partial epilepsy disorders. The aim of our study was to assess the impact of quantit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of nuclear medicine : official publication, Society of Nuclear Medicine

دوره 52 5  شماره 

صفحات  -

تاریخ انتشار 2011